Monthly Archives: September 2013

Meeting of the Minds
Meeting of the MindsMeeting of the Minds is an annual international summit which was held in Toronto for the first time Sept 9-11. Speakers included Ryerson University President Sheldon Levy, Hossein Rahnama and Digital Media Zone entrepreneurs from Komodo and HitSend.

Hossein presented to the group September 11 on smart cities and the ease of implementation with intelligent mobile solutions and minimal infrastructure. His talk referenced existing work at RC4 including the Ministry of Transportation of Ontario project which demonstrates a functional Intelligent Transportation System operated by a context engine and sleek web interface. Attendees responded with excitement for the growth of smart cities at the event and on Twitter where the subject went viral. Follow the hashtag #MOTM2013 to keep up with the conversation.

RU_smart-campus_icon (1)The Ryerson Smart Campus initiative is a collaborative project under discussion that would involve the Ryerson Computing & Communications Services Mobility Team, RC4 and Flybits — a Ryerson spin-off company at RC4 specializing in context-aware technology. The concept has been presented to University stakeholders and follow-up strategy planning is taking place among the groups involved. As we iron out the details of development and deployment, RC4 will communicate the progression of the project.

Enhancing and Personalizing the Campus Experience

Upon project completion, students, staff, faculty and campus visitors alike would be able to access relevant information on their
mobile phones based on who they are, where they are and what their particular needs are at any given time. The technology senses and interprets real-time contextual parameters surrounding each mobile user and as such delivers a customized user experience — specific to each users’ needs on Ryerson campus.

Core features of the initiative will include:

  • Disseminating information in real-time through the creation of semantic-driven, rule-oriented geo-fences
  • Associating logic with Smart Ryerson Apps through intuitive drag-and-drop functionality
  • Safeguarding user privacy
  • Customizable mobile analytics (real-time and passive) resulting in improved content, services and user behaviour insight

Based on the notion of the “Internet of Things” whereby inanimate objects respond to sensors to form an internet-like structure, RC4 created a collaboration to put this hot topic to work. A university collaboration among Electrical Science and Computer Science researchers as well as a Ryerson spin-off company, this project is creating a Smart Kitchen — starting with a smart, internet-connected coffee maker. The main objective was to enable a simple, store bought coffee maker to respond to sensory data and perform based on person’s preferences, profile and their physical location. Alexandre Doubov and Mustafa Juwait, RC4 Electrical Engineering Researchers explain the process they went through to finalize the first phase of this project. More smart appliances to come!

Steps to Creating a Smart Coffee Maker 

as told by RC4 Electrical Engineering Research Assistants, Alexandre Doubov and Mustafa Juwait

Step One:

Controlling the coffee maker remotely was our first task, which required; (a) a way to communicate with the appliance, and (b) ability to manage the power being used by the machine without physically pressing any buttons or prompts.

Step Two:

To solve our objectives outlined in step one, we determined that we would require an Arduino micro-controller and the Arduino-compatible WiFi shield. We updated the firmware to enable connectivity, which took a few days on our end to troubleshoot and determine exactly why the system was not reacting as planned.

Step Three:

To control the power flow remotely, an electrical relay was triggered by the micro-controller. The relay was chosen based on two constraints imposed by the input and output of the micro-controller, voltage and the amount of current that the relay could control.

To power the Arduino, a 110V AC to 9V DC adapter was used, which was wired into the power cord of the coffee maker. Both the relay and the power adapter were hidden inside the coffee maker.

Step Four:

Once all the electrical and mechanical issues were resolved, we began working on the web interface, with controls for status updates, the user’s location and control buttons for turning the coffee maker on/off. We also implemented logic that sends out status updates only when there has been a change in one of the status parameters i.e. location, preferences. This approach uses very little server resources.

Step Five:

At this point, if a person tries to connect to the coffee maker using the web interface, their location will be verified. The permission to control the device is based on whether a user is within an RC4 geo-fenced zone.

Step Six:

Now that the we’ve proven that the coffee machine can be controlled remotely, we’d like to work with Computer Science Engineering Researchers at RC4 to build an Android app which additional functionality and a user-friendly interface. Additionally, we’d like to add more appliances to the network, proving the Internet of Things and the capabilities of Smart Kitchens.